Recovering Probability Distributions from Missing Data
نویسنده
چکیده
A probabilistic query may not be estimable from observed data corrupted by missing values if the data are not missing at random (MAR). It is therefore of theoretical interest and practical importance to determine in principle whether a probabilistic query is estimable from missing data or not when the data are not MAR. We present algorithms that systematically determine whether the joint probability distribution or a target marginal distribution is estimable from observed data with missing values, assuming that the data-generation model is represented as a Bayesian network, known as m-graphs, that not only encodes the dependencies among the variables but also explicitly portrays the mechanisms responsible for the missingness process. The results significantly advance the existing work.
منابع مشابه
Estimating missing data sequences in x-ray microbeam recordings
Techniques for recording the vocal tract shape during speech such as X-ray microbeam or EMA track the spatial location of pellets attached to several articulators. Limitations of the recording technology result in most utterances having sequences of frames where one or more pellets are missing. Rather than discarding such sequences, we seek to reconstruct them. We use an algorithm for recoverin...
متن کاملA blended model for estimating of missing precipitation data (Case study of Tehran - Mehrabad station)
Meteorological stations usually contain some missing data for different reasons.There are several traditional methods for completing data, among them bivariate and multivariate linear and non-linear correlation analysis, double mass curve, ratio and difference methods, moving average and probability density functions are commonly used. In this paper a blended model comprising the bivariate expo...
متن کاملBayesian Clustering with Outliers and Missing Values
The Bayesian Robust Mixture Model (BRMM) is a fully probabilistic model for grouping realvalued data into a finite number of clusters. The model is robust in the sense that it tolerates outliers in the data and handles missing values, both within the Bayesian inference framework. Foreword The purpose of this report is to provide a detailed, step-by-step derivation of the variational update equa...
متن کاملProbability Distribution Fitting to Maternal Mortality in Nigeria.
The consequences of Maternal Mortality (MM) cannot be overemphasized. It inhibits population growth resulting into loss of lives among others. This work tends to obtain the maternal mortality rates (MMR) in Nigeria, identify some fitted distributions to MMR and determine which of the distributions best fits the data. A comprehensive Exploratory Data Analysis (EDA) was carried on MM and the MMRs...
متن کاملMissing data approaches for probability regression models with missing outcomes with applications
In this paper, we investigate several well known approaches for missing data and their relationships for the parametric probability regression model Pβ (Y|X) when outcome of interest Y is subject to missingness. We explore the relationships between the mean score method, the inverse probability weighting (IPW) method and the augmented inverse probability weighted (AIPW) method with some interes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017